↑ Επιστροφή σε Βιογραφικό

Ερευνητικό έργο

ΒΙΒΛΙΟΓΡΑΦΙΑ

E.M. Alfsen-J.E. Fenstad

  1. On the equivalence between proximity structures and totally bounded uniform structures. Math. Scand. 7 (1959), 353-360.
  2. A note on completion and compactification. Math. Scand. 8 (1960), 97-104.

E.M. Alfsen-O. Njastad

  1. Proximity and generalized uniformity. Fund. Mat. 52 (1963), 235-252.
  2. Totality of uniform structures with linearly ordered base. Fund. Mat. 52 (1963), 253-256.

R.A. Alo-H.L. Shapito

  1. Continuous uniformities. Math. Ann, 185 (1970), 322-328.
  2. Appert–Ky-Fan.
  3. Espaces topologiques intermediaires. Problém de la distanciation. Herman,

Paris, 1951.

  1. Atsuji
  2. Uniform continuity of continuous functions of metric spaces. Pacific J. Math. 8 (1958), 11-16.
  3. Aumann
  4. Katastrophentheorie auf Verbänden. Bayer. Akad. Wiss. Math. –Natur. KI.

Sitzunghber (1977), 1-11.

  1. Baggs
  2. Some relationships between filters. Canad. Math. Bull. (1967).

R.W. Bagley

  1. Invariant uniformities for coset spaces. Math. Scand. 14 (1964), 19-20.

R.W. Bagley-T.S. Wu

  1. Topological groups with equal left and right uniformities. Proc. Amer. Math. Soc. 18 (1967), 142-147.
  2. Bahauddin-J. Thomas
  3. The homology of uniform spaces. Canad. J. Math. 25 (1973), 449-455.
  4. Barnhill-P. Fletcher
  5. Topological space with a unique compatible quasi-uniform stru­cture. Arch. Math. XXI (1970), 206-209.
  6. Berthiaume
  7. On quasi-uniformities in hyperspaces. Proc. Amer. Math. Soc. 66 (1977).

H.J. Biesterfecldt

  1. Completion of a class of uniform convergence spaces. Indag. Math. 28 (1966), 602-604.
  2. Bourbaki
  3. Theorie des ensembles, Chap.3. Hermann, Paris, 1967.
  4. Topologie générale, Chap. 1-4. Hermann, Paris, 1971.
  5. Topologie générale, Chap. 5-10. Hermann, Paris, 1974.

G.C.L. Brümmer

  1. Initial quasi-uniformities. Indag. Math. 31 (1969), 403-409.

 

  1. Bushaw
  2. On boundedness in uniform spaces. Fund. Math. 56 (1965), 295-300.

J.W. Carlson

  1. Quotient structures for quasi-uniform spaces. Collog. Math. 26 (1976), 63-68.

J.W. Carlson-T.L. Hichs

  1. Some properties of quasi-uniform structures. Arch. Math. 24 (1973)
  2. Čech
  3. Topological Spaces. Interscience Publishers, New York, 1966.
  4. Cohen
  5. Uniformities properties in topological space satisfying the first denumerability

postulate. Duke Math. J. 3 (1937), 610-615.